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Abstract 
An effective segmented line search technique for constructing D-optimal exact designs in a polynomial response 
function of degree z is presented in this paper. The direction of search is a weighted average from all segments of 
the experimental trials; the weight being proportional to the mean square errors from the segments. The method is 
rapidly convergent and its application in continuous experimental areas is shown. 
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1. Introduction 
The method reported here is a segmented line search 
procedure for constructing D-optimal exact designs in a 
continuous experimental region. In this search system, 
variance of polynomial response function of degree z is 
approximated by a polynomial function of degree 2z. 
Maximizer of this polynomial is determined by 
segmenting the experimental area into segments. 
Thereafter, this maximizer is used to replace the point 
of minimum prediction variance amongst the points 
already in the design. The search method is via the 
Super Convergent line Search Series reported by 
Onukogu (1997) [8] which has shown to have rapid 
convergence capability; see Onukogu and Chigbu 
(2002, p. 112) [9], and Ugbe and Chigbu (2014) [11]. 
    Every line search technique has four characteristics 
sequence as follows: (a) the starting point, �̅�,  which is 

an n-component vector, x ; (b) an n-component 
direction vector,  𝑑; (c) the step-length, ;ρ  and (d) 
Movement to the iterate, (   𝑥 = �̅� + 𝑑𝜌 ). This 
set of sequential activities applies as well to this 
technique herein reported. 
   This search method also makes use of variance 
exchange of points procedure which is originally 
reported by Fedorov (1972) [5], and modified severally 
over decades before the Variance Exchange Method 
reported by Atkinson and Donev (1989) [1].  
2. Design Background Problem  

Given the basic experimental triple { },x,xF ,X~ ∑  
where 𝐹𝑥 is the response functions, which is a space of 
finite dimensional linear function and continuous in ;~X   

X~  is a collection of factor levels x , which constitutes 
a compact, continuous and metric space, and at each 
point, 𝑥 ∈ 𝑋�, the response is observed with a random 
error, 𝑒𝑥, which is a point in the space, ∑ x which is a 
non-negative continuous function, define in 𝑋� (Chigbu 
and Oladugba, 2010) [4]. 

     In this study, treatment or support point, x , was 
selected such that each element of ix , is attached a 
weigh wi; wi  ≥ 0 and ∑ wi

n
i=1 = 1, where n is the 

number of support points in the design. From a 
collection of n support points we form a design matrix, 
X, as well as normalized Fisher’s information matrix, 

M( nξ ) = 
𝑋𝜉
′ 𝑋𝜉𝜎2

𝑛
, where X is the design matrix of the 

model terms (the columns) evaluated at specific 
point/treatment in the design space (the rows), 𝑋𝜉′ 𝑋𝜉 is 
a non-singular matrix (information matrix) and 
𝜎2(𝑋𝜉′ 𝑋𝜉)−1 is the variance-covariance matrix of the 
least square estimate of the response parameters.  

    Our interest is to find n-points design, 𝑥𝑖 ∈ 𝑋�, 𝑖 =
1, 2, … , 𝑛, such that the resultant information matrix 
(𝑋𝜉′ 𝑋𝜉) is maximized. A design criterion that 
maximizes the determinant of the information matrix 
|𝑋𝜉′ 𝑋𝜉| or, equivalently, minimizes |𝑋𝜉′ 𝑋𝜉|−1 is referred 
to as D-optimality. Other optimality criteria have been 
reported severally (Atkinson and Donev, (1992) [2]; 
Onukogu and Chigbu (2002) [9]).  
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    Therefore in this paper, the intention is to present a 
search method which seeks iteratively an n-point design 
measure, 𝜉𝑛 that maximizes the determinant of M(𝜉∗); 
i.e Max| M(𝜉∗)|;  M(𝜉𝑛)  ∈ 𝑆𝑝 × 𝑝 , where 𝑆𝑝 × 𝑝 is a set 
of all non-singular p x p information matrices defined 
in 𝑋�. 

3. Theoretical Framework 

The method is summarized by the following sequence 
of steps. 

3.1. Pick at random an initial n-point design of 
nonsingular information matrix.  

3.2. Obtain its extended design matrix, X, according to 
the model terms, and the Fisher’s information matrix, 
𝑋𝜉′𝑋𝜉 = 𝑀(𝜉).  

3.3. From the above, compute standardized generalized 
variance function of degree 2z as  

𝑑�𝑥, 𝜉� = 𝑛𝑥′𝑀−1(𝜉)𝑥,                          (3.1) 

              = 𝑔(𝑥)              (3.2) 

= 𝛽0 + ∑ 𝛽𝑖𝑚
𝑖=1 𝑥𝑖 +∑ 𝛽𝑖𝑚

𝑖=1 𝑥𝑖  + ∑ ∑ 𝛽𝑖𝑚
𝑖<𝑗

𝑚−1
𝑖=1 𝑥𝑖𝑥𝑗  …                          

𝑥1×𝑝
′

= (1  𝑥1𝑖   𝑥2𝑖   .  .  .  𝑥1𝑖  𝑥2𝑖    𝑥1𝑖𝑥3𝑖   .  .  .𝑥1𝑖2    𝑥2𝑖2 .  .  . )  

Note that the number of factor interaction is 𝑚(𝑚−1)
2

, 
where m is the number of factors or variables.  

3.4. Partition the experimental region,𝑋�, either into 
𝑆𝑘 ;𝑘 = 1,2.  .  . , 𝑠 non-overlapping segments such that 
𝑆1 ∩ 𝑆2  .  .  .∩ 𝑆𝑠 = ∅, and 𝑆1 ∪ 𝑆2.  .  .∪ 𝑆𝑠 ≤  𝑋�; or 
with common boundary such that 𝑆1 ∩ 𝑆2  .  .  .∩ 𝑆𝑠 ≠
∅, and 𝑆1 ∪ 𝑆2.  .  .∪ 𝑆8 ≤  𝑋�: See (Ugbe and Chigbu 
(2014) [11].  

3.5. From each kth segment, pick or select 𝑛𝑘 supports 
points, 𝑛𝑘 ≥ 𝑚 + 1,𝑘 = 1,2,.  .  . 𝑠;  ∑ 𝑛𝑘𝑠

𝑘=1 = 𝑁0, the 
total number of selected points in all the segments.  

3.6. Obtain the design matrix, 𝑋𝑘 , 𝑘 = 1, 2,.  .  . , 𝑠, for 
each segment, and the information matrices,  

 𝑋
𝑘

= 𝑋𝑘′ 𝑋𝑘                             (3.3) 

3.7. Compute 𝑋𝑏𝑘, the matrices of 
interaction/biasing effect of the variable for each 
segment; where k = 1, 2, .  .  ., s; and the vector of 
coefficient of interaction/biasing terms of g(𝑥) is given 

by  𝑐𝑏. Matrix of mean square error of each of the kth 
segment is given by  

𝑀𝑘 = 𝑋
𝑘

−1
+ 𝑋

𝑘

−1
𝑋𝑘′ 𝑋𝑏𝑘𝑐𝑏𝑐𝑏′ 𝑋′𝑏𝑘𝑋𝑘𝑋𝑘

−1
              (3.4)                                                                                                   

where 𝑋
𝑘

= 𝑋𝜅′𝑋𝜅 , and 𝑀𝑘 is an (m+1) x (m + 1) 
matrix, m being the number of factors/variables.  

3.8. The average mean square error is minimized to 
obtain the matrix of convex combination, 𝐻𝑘; Thus, 
min (𝑀(𝑑𝑡)) = min (∑ ℎ𝑡𝑘𝑠

𝑘=1 𝛼𝑡𝑘) and as the cross 
terms are zero; we have  

min�𝑀(𝑑𝑡)� = 𝑚𝑖𝑛 ∑ ℎ𝑡𝑘2𝑠
𝑘=1 𝑀(𝑎𝑡𝑘)              (3.5) 

where 𝑑𝑡 = ∑ ℎ𝑡𝑘𝑠
𝑘=1 𝑎𝑡𝑘 ; ∑ ℎ𝑡𝑘𝑠

𝑘=1 = 1; 𝑡 =
0, 1, … ,𝑚,ℎ𝑡𝑘 ≥ 0. 

The values, ℎ𝑡𝑘, are obtained by taking partial 
derivatives of 𝑀(𝑑𝑡) with respect to ℎ𝑡𝑟 of equation 
(3.5), equating to zero, and solving.  

3.9. The average information matrix from all the 
segments is given by  

𝑀𝑑 = 𝐻𝑋′𝑋 𝐻′  

= �𝐻𝑘

𝑠

𝑘

𝑋𝑘′ 𝑋𝑘𝐻𝑘′  

Where H is a matrix of convex combination, and H = 
(H1, H2, . . . , Hs) 

𝑋𝜄𝑋 = 𝑑𝑖𝑎𝑔 (𝑋1′𝑋1,𝑋2′𝑋2, … ,𝑋𝑠 
′ 𝑋𝑠 ); 

3.10. The response vector, z, is obtained from the 
variance function, g (x). Hence,  

𝑧 = (𝑧0, 𝑧1, … , 𝑧𝑚)′; 𝑧𝑖 = 𝑔�𝜂𝑖𝑗�,                       (3.6) 

 𝑖 = 0, 1, … ,𝑚; 𝑗 = 1, 2, … ,𝑚;   

Where 𝜂𝑖𝑗 is the ith and jth element of the average 
information matrix, 𝑀𝑑.  

3.11. Obtain the vector, starting point (𝑥
𝑗
∗), 

  

𝑥
𝑗
∗ = �𝑤𝑖

𝑁0

𝑖=1

𝑥𝑖; 𝑤𝑖 =
𝑎𝑖−1

∑ 𝑎𝑖−1
𝑁0
𝑖=1

;  

𝑎𝑖 = 𝑥𝑖 ′𝑀−1(𝜉𝑁)𝑥𝑖;                                           (3.7) 

And the direction vector (𝑑∗)  is,  
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�̂� = 𝑀𝑑
−1𝑧                                             (3.8) 

𝑑 = (𝑑0,𝑑1, .  .  . ,𝑑𝑚)′ and normalized such that 

�̂�′∗�̂�∗ = 1. Thus, 𝑑∗ = 𝑑(𝑑′ 𝑑)−
1
2; and the optimal step-

length (𝜌∗), 𝑔(𝜌) = 𝑔(𝑥
𝑗

+ 𝜌𝑑), and by taking 
derivatives of the function with respect to 𝜌, we have  

𝑑[𝑔(𝜌)]
𝑑𝜌

= 0; 

3.12. The new point is 𝑥𝑗 = 𝑥∗ + 𝜌∗𝑑∗, 𝑗 =  1, 2,   .  .  .   

3.13. Take the point, 𝑥1, to step (3.5) above and add it 
to the segment it falls into, so that the number of 
support points for the segment is (𝑛𝑘 + 1), and follow 
the steps down to obtain a second point 𝑥2. Again, add 
the points, 𝑥2, to the segments it falls, and continue 
with the steps to obtain a third pint, 𝑥3, etc. This 
process is continued until it converges to a point, 𝑥𝑗∗.  

3.14. Compute the prediction variance of each design 
points as 𝑥𝑖 ′𝑀−1(𝜉0)𝑥𝑖; i = 1, 2, . . . , n and select the 
one with minimum prediction variance 𝑉�𝑥𝑚𝑖𝑛� = 
𝑥𝑚𝑖𝑛 
′ 𝑀−1 (𝜉0)𝑥𝑚𝑖𝑛 . Add the point 𝑥𝑗′ row vector to 

augment the n rows extended matrix, and remove the 
point with minimum predicted variance in the design to 
have the determinant as  

�𝑀(𝜉0) + 𝑥𝑗𝑥𝑗′ − 𝑥𝑚𝑖𝑛𝑥𝑚𝑖𝑛′ � 

            = |𝑀(𝜉0)|�1 + ∆�𝑥𝑗 ,𝑥𝑚𝑖𝑛��  

Note that 𝑥𝑚𝑖𝑛 is the point of minimum prediction 
variance in the design and 𝑥𝑗∗ is the point of maximum 
prediction variance from the experimental region, 𝑋�.  

3.15. With the new point in the design, compute the 
inverse information matrix, and the variance function, 
𝑔�𝑥�, and continue the other processes of the steps to 
obtain another converging point, which is exchanged 
with a point of minimum prediction variance from the 
design.  

3.16. Is �det 𝑀𝑗(𝜉)� − det  𝑀𝑗−1(𝜉) | 

            ≤ 𝜖; 𝜖 ≥ 0? 

Yes; stop and  𝑀𝑗(𝜉) is D-optimal. 

4. Convergence of the sequence  

Given a line sequence 𝑥𝑗 = 𝑥
𝑗

+ 𝜌𝑗𝑑𝑗 ; 𝑗 = 1, 2, … ; 

then,     �𝑥𝑗�𝑗=1
∞

 = {𝑥
𝑗

+ 𝜌𝑗𝑑𝑗}𝑗=1∞  

 �𝑥𝑗�𝑗=1
∞

= 𝑥𝑟 

Proof  

Define the information matrix at the jth iteration as  

𝑀𝑗(𝜉𝑛) = ∑ 𝑥𝑖𝑥𝑖′𝑛
𝑖=1 (𝜉𝑛): See Gaffke and Krafft(1982) 

[7]  , then  

𝑀𝑗 = 𝑥1𝑥1′ + 𝑥2𝑥2′+. . . +𝑥𝑟𝑥𝑟′+. . . 𝑥𝑛𝑥𝑛′  

 ∑ 𝑥𝑖𝑛−1
𝑖=1 𝑥1′ + 𝑥𝑟𝑥𝑟′  

Set 𝑀0 =  ∑ 𝑥𝑖𝑛−1
𝑖=1 𝑥1′  

    𝑀𝑗 = 𝑀0 + 𝑥𝑟𝑥𝑟′  ,  

Then the determinant becomes 

|𝑀𝑗| = |𝑀0 + 𝑥𝑟𝑥𝑟′ |  

 |𝑀0(1 + 𝑥𝑟′𝑀0
−1𝑥𝑟)|                            (4.1) 

The information matrix at the (j-1) iteration is 𝑀𝑗−1 =
𝑀0 + 𝑥𝑘𝑥𝑘′  

 |𝑀𝑗−1| = |𝑀0 + 𝑥𝑘𝑥𝑘′ | 

�𝑀𝑗−1� = |𝑀0�1 + 𝑥𝑘′ 𝑀0
−1𝑥𝑘�|                           (4.2) 

By comparing equation (4.1) and (4.2), the sequence 
moves from a point of low variance to a point of high 
variance, therefore  

𝑥𝑘′ 𝑀0
−1𝑥𝑘 ≤ 𝑥𝑟′  𝑀0

−1𝑥𝑟  

  𝑥𝑗−1′ 𝑀𝑗−1
−1 𝑥𝑗−1 ≤ 𝑥𝑗′𝑀𝑗

−1𝑥𝑗,                  (4.3) 

Since 𝑀0 = ∑ 𝑥𝑖𝑛−1
𝑖=1 𝑥𝑖′ is the same in both equations 

�𝑀0�1 + 𝑥𝑟′  𝑀0
−1𝑥𝑟�� ≥ �𝑀0�1 + 𝑥𝑘′ 𝑀0

−1𝑥𝑘�� 

 |𝑀𝑗| ≥ |𝑀𝑗−1| 

Then, since 𝑥𝑘′ 𝑀0
−1𝑥𝑘  ≤  𝑥𝑟′  𝑀0

−1𝑥𝑟 ,  it follows from 
equation (4.3) that the point {𝑥𝑗′𝑀𝑗−1𝑥𝑗}𝑗=1∞ , is 
monotonically increasing, and is sure to converge to a 
point, 𝑥𝑟.  

=> {𝑥𝑗}𝑗=1∞ = 𝑥𝑟. Therefore, the Kolmogrov’s condition 
for convergence with probability one is assured, see 
Feller (1966, pg 259), and Onukogu and Nsude (2014) 
[10].   

The sequence has the following attributes: 
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(i) The direction vector is a weighted average 
from all segments; the weight being 
proportional to the mean square errors 
from the segments; see equation (3.7) and 
the sequence converges with minimax 
point; see Atkinson and Donev (1992, 
chapt. 11) [2]. 

(ii) Again, the response function was not use, 
only its variance function. 

(iii) Division of experimental region into s 
over-lapping or non-overlapping segments 
avoids the use of second derivative in 
obtaining Hessian matrix which at times 
constitutes problem of inevitability in 
most line search algorithms, eg. Newton’s 
method is achieved.  

5. Numerical Demonstrations 

The problems below are used to illustrate the numerical 
behavior of the search system.  

Problem 1: Consider a polynomial regression function, 
𝑓�𝑥� = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2,−1 < 𝑥 < 1; obtain a 4-
point exact D-optimal design. (Atkinson and Donev, 
1992) [2]; (Atkinson, Donev and Tobias, 2006) [3] used 
this problem to find exact D-optimal design of a 
quadratic polynomial of a single factor. Begin with 
initial design points as  

𝜉0 = {−1,−0.3333, 0.3333, 1} 

The extended design matrix is,  

𝑋(𝜉0) = �
1 −1 1
1 −0.3333 . 1111
1
1

0.3333
1

. 1111
1

� ;   

𝑋′𝑋(𝜉0) = 𝑀(𝜉0) 

                = �
4.0000 0 2.2222

0 2.2222 0
2.2222 0 2.0247

� 

The variance-covariance matrix is 

𝑀−1(𝜉0)    = �
0.6404 0 −0.7031

0 0.4500 0
−0.7031 0 1.2656

� ; 

𝑑𝑒𝑡𝑀(𝜉0) = 7.0233 

The standardized general variance function is given by  

𝑔�𝑥� = 𝑛𝑥′𝑀−1(𝜉0)𝑥 = 𝛽0 +�𝛽0

4

𝑖=1

𝑥𝑖 

Thus, the variance function is  

𝑔�𝑥� = 2.5624 − 3.8249𝑥2 + 5.0624𝑥4                                                    

Now partition the experimental region −1 ≤ 𝑥 ≤ 1 into 
k=2 non over-lapping segments; −1 ≤ 𝑆1 ≤ −0.25, 
and 0.25 ≤ 𝑆2 ≤ 1 and in the kth segment, 𝑔(𝑥) is 
approximated by a first-order linear function.  

Thus, 𝑦𝑘 = 𝛽00 + 𝛽0𝑘𝑥 ;𝑘 = 1, 2. 

Pick points in the 𝑠𝑘 segments, and obtain the 𝑋𝑘 design 
matrices as thus: 

 𝑋1= �
1
1
1
1

 
   −1.0000

  
−0.7500
−0.5000
−0.2500

  � ;
     
 𝑋2

= �
1
1
1
1

 
  0.2500

  
0.5000
0.7500
1.0000

  � 

and their information matrices are respectively given as 

                    𝑋�1 = � 4 −2.5000
−2.5000 1.8750 � ;  

𝑋�2 = � 4 2.5000
 2.5000 1.8750� ; 

where 𝑋�1 = 𝑋1′𝑋1 and 𝑋�2 = 𝑋2′𝑋2  

The matrices of biasing terms, 𝑥2, 𝑥4, of the variance 
function, 𝑔�𝑥�, of each segment are  

𝑋𝑏1 =

⎝

⎜
⎛1.0000

0.5625
0.2500
0.0625

   
1.0000
0.3164
0.0625
0.0156⎠

⎟
⎞

; 

𝑋𝑏2 =

⎝

⎜
⎛0.0625

0.2500
0.5625
1.0000

   
0.0156
0.0625
0.3164
1.0000⎠

⎟
⎞

 

and the coefficient of biasing terms is  

𝑐𝑏 = �
−3.8248
5.0625

� 

The matrix of mean square error of each of the kth 
segment is given by  

𝑀𝑘 = 𝑋
𝑘

−1
+ 𝑋

𝑘

−1
𝑋𝑘′𝑋𝑏𝑘𝑐𝑏𝑐𝑏′ 𝑋′𝑏𝑘𝑋𝑘𝑋𝑘

−1
 

 𝑀1 = �2.7070
3.8821  3.8821

6.1347� ; and 

𝑀2 = � 2.7070
−3.8821  −3.8821

6.1347 � 
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The matrices of convex combination of the segments 
are 𝐻1 = 𝑑𝑖𝑎𝑔(0.5, 0.5) and 𝐻2 = (1 −𝐻1) =
𝑑𝑖𝑎𝑔(0.5, 0.5).  These matrices are normalized to have  

𝐻1∗ = 𝑑𝑖𝑎𝑔(0.7071, 0.7071), and  

𝐻2∗ = 𝑑𝑖𝑎𝑔(0.7071, 0.7071).  

The direction vector �̂�, is �̂� = 𝑀𝑑
−1𝑧 

𝑑 = �
𝑑0
𝑑1
� ; �̂� = �

0.6406
27.5654

� 

and the normalized direction vector, �̂�,  such that �̂�′ 
�̂� = 1 is  

�̂� = �
0.0232
0.9997

� 

Then, the optimal starting point is 

𝑥
𝑗

=  �𝑤𝑖𝑥𝑖

8

𝑖=1

 

𝑥
0

= �
1.0000
0.0000

� 

Compute the optimal step-length, 𝜌0, by substituting the 
values of 𝑥

0
= 0 and �̂� = 0.9997 in the variance 

function, we have  

𝑔(𝜌0) = 2.5624− 3.8248(0 + .9997𝜌0)2 +
5.0624(0 + 0.9997𝜌0)4  

 and solve for 𝜌0 to have 

𝜌�0 = 0; 𝑜𝑟 
𝜌�0 = 0.6148; 𝑜𝑟 

𝜌�0 = 0.6148 

Make a move to obtain a point,  

𝑥1 = 𝑥
0

+ 𝜌�0�̂� 

Thus, substituting the three values of 𝜌�0, and have 

𝑥1 = 0; 𝑜𝑟 

-0.6148; or 

0.6148. 

Checking the prediction variance at each of these three 
points, we have  

𝑥1 = 0 = 𝑥𝑚𝑎𝑥. 

Beginning another iteration in this iteration cycle, we 
add the point, 𝑥𝑚𝑎𝑥= 0, to the second segment (S2) and 
repeat the process. The points in the first segment are 
the same as to the first iteration, whereas the second 
segment is increased by the new point.  

This is because; this point falls in the second segment.  

Thus, a MATLAB program was developed for this 
work and the result of the iteration cycles is present in 
the table 5.1 below.  

Table 5.1: The iteration sequence of D-
optimal design in (-1, 1), for a quadratic single 
factor polynomial function  
 

In this table, the value of 𝜖 = 0.0005 is considered very 
small, meaning that the optimal design is achieved. 
Therefore, the optimal design points are, (-1,  0.0048, 0, 
1).  

Problem 2 

Let us consider the most general second-order 
polynomial in two factors with a known solution. Thus, 
𝑓�𝑥� = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝛽11𝑥12 + 𝛽22𝑥22, 
−1 ≤  𝑥1,𝑥2 ≤ 1;  to obtain a 6-point exact D-optimal 
design.  

In the experimental region, 𝑋,�  pick the following points.  

�
𝑥1
𝑥2

  
−1
1   

−1
−1  

1
−1 

 1
 1  

 0
−1  

−.25
. 25

� 

Then, the extended design matrix is 

𝑋(𝜉0) =

⎝

⎜⎜
⎛

1 −1 1
1 −1 −1
1
1
1
1

1
1
0

−.25

−1
1
−1
. 25

   

−1
1
−1
1
0

−.0625

   

1
1
1
1
0

. 0625

   

1
1
1
1
1

. 0625⎠

⎟⎟
⎞

 

and the information matrix is  

Iteration Design Points  
det𝑀 (𝜉) 

𝜖 

0 
1 
2 
3 
4 

-1       -.3333          .3333          1 
-1       -.3333             0              1 
-1        .0191             0              1 
-1        .0096             0              1 
-1        .0048             0              1 

7.0233 
7.4074 
7.9978 
7.9994 
7.9999 

0 
.3841 
.5904 
.0016 
.0005 
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𝑋′𝑋 = 𝑀(𝜉0)

=

⎝

⎜⎜
⎛

6 −.25 −.75
−.25 4.0625 −0.625
−.75
−.0625
4.0625
5.0625

−.0625
. 0156
−.0156
−.0156

5.0625
−.0156
. 0156
−.9844

   

−.0625
. 0156
−.0156
4.0039
−.0039
−.0039

   

4.0625
−.0156
. 0156
−.0039
4.0039

4.00039

   

5.0025
−.0156
−.9844
−.0039
4.0039
5.0039⎠

⎟⎟
⎞

 

The variance-covariance matrix is  

 𝑀−1(𝜉0)

=

⎝

⎜⎜
⎛

1.1756 . 0667 −.0667
. 0667 . 2500 0.0
−.0667
. 0167
. 0500
−1.2422

0.0
0.0
0.0

−.0667

. 25
0.0
−.25

. 3167

   

. 0167
0.0
0.0

. 2500
0.0

−.0167

   

. 05
0.0
−.25
0.0

1.5000
−1.3

   

−1.2422
−.0667
. 3167
−.0167
−1.3

2.5589 ⎠

⎟⎟
⎞

; 

𝐷𝑒𝑡𝑀 (𝜉0) = 225.000 

The standardized general variance function is  

𝑑�𝑥, 𝜉0� = 𝑛𝑥′𝑀−1(𝜉0)𝑥, = 𝑔(𝑥) 

= 𝛽0 + �𝛽𝑖𝑥𝑖

𝑚

𝑖=1

+ ��𝛽𝑖𝑗𝑥𝑖

𝑚

𝑖<𝑗

𝑚−1

𝑖=1

𝑥𝑗 +�𝛽𝑖𝑖𝑥𝑖2
𝑚

𝑖=1
+.  .  .                   

Where  

𝑥1×𝑝
′ = (1  𝑥1   𝑥2    𝑥1𝑥2    𝑥12    𝑥22 ) 

Thus, the variance function is  

𝑔�𝑥� = 7.0536 + .80042𝑥1 − .8004𝑥2 + .2004𝑥1𝑥2
+ 2.1𝑥12 − 13.4064𝑥22 − .8002𝑥1𝑥22
− 3𝑥12𝑥2 + 3.8004𝑥23 − 14.1𝑥12𝑥22
− .002𝑥1𝑥23 − .1002𝑥13𝑥2 + 9𝑥14
+ 15.3534𝑥24 

We now partition the experimental region −1 ≤
𝑥1,𝑥2 ≤ 1 into k-segments, k=2 with common 
boundary as  

𝑆1 = {−1 ≤ 𝑥1 ≤ 0,−1 ≤ 𝑥2 ≤  1} and 𝑆2 =
{0 ≤ 𝑥1 ≤ 1,−1 ≤ 𝑥2 ≤ 1}, and in the kth segment, 
𝑔�𝑥�  is approximated by a first-order linear function.  

Thus, 𝑦𝑘 = 𝛽00 + 𝛽1𝑘𝑥1+ 𝛽2𝑘𝑥2; k=1, 2.  

Pick points in the 𝑆𝑘 segments, and obtain the 𝑋𝑘 
design matrices as thus 

𝑋1 =

⎝

⎜⎜
⎛

1 −1 1
1 −1 0
1
1
1
1

−1
0
0
0

−1
1
0
−1⎠

⎟⎟
⎞

;𝑋2 =

⎝

⎜⎜
⎛

1 1 1
1 1 0
1
1
1
1

1
0
0
0

−1
−1
0
1 ⎠

⎟⎟
⎞

 

and their information matrices are respectively given as 

𝑋�1 = �
6 −3 0
−3 3 0
0 0 4

� ; 𝑋�2 =  �
6 3 0
3 3 0
0 0 4

� ; 

Where 𝑋�1 = 𝑋1′𝑋1 and 𝑋�2 = 𝑋2𝜄𝑋2  

The matrices of biasing terms, 𝑥1𝑥2,𝑥12, .  .  . , 𝑥24, of the 
variance function of each segment are  

𝑋𝑏1 =

⎝

⎜⎜
⎛

−1 1 1
0 1 0
1
0
0
0

1
0
0
0

1
1
0
1

   

−1
0
−1
0
0
0

   

1
0
−1
0
0
0

   

1
0
−1
1
0
−1

   

1 −1 −1
0 0 0
1
0
0
0

1
0
0
0

1
1
0
1

   

1
1
1
0
0
0

   

1
0
1
1
0
1⎠

⎟⎟
⎞

 

and 

𝑋𝑏2 =

⎝

⎜⎜
⎛

1 1 1
0 1 0
−1
0
0
0

1
0
0
0

1
1
0
1

   

1
0
1
0
0
0

   

1
0
−1
0
0
0

   

1
0
−1
−1
0
−1

   

1 1 1
0 0 0
1
0
0
0

−1
0
0
0

−1
1
0
1

   

1
1
1
0
0
0

   

1
0
1
1
0
1⎠

⎟⎟
⎞

 

while the coefficient of biasing terms is  

𝑐𝑏′ = (.2004  2.1000− 13.4064− .8004− 3.000−
3.8004 − 14.1000− .002 − .1002  9.0000  15.3534 ) 

The matrix of mean square error of each of the kth 
segment is given by  

𝑀𝑘 = 𝑋
𝑘

−1
+ 𝑋

𝑘

−1
𝑋𝑘′𝑋𝑏𝑘𝑐𝑏𝑐𝑏′ 𝑋′𝑏𝑘𝑋𝑘𝑋𝑘

−1
 

=> 𝑀1 = �
2.0181 −2.5659 2.9859
−2.5659 5.6556 −5.1382
2.9895 −5.1382 5.5418

� ;𝑎𝑛𝑑   

𝑀2 = �
2.0181 1.1807 2.9895
1.1807 2.0272 2.6832
2.9859 2.6832 5.5418

� 

The matrices of convex combination of the segments 
are arranged in the Hi matrices as follows  

𝐻1 = �
. 5000 0 0

0 . 2639 0
0 0 . 5000

� ; 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015                                                                   1853   
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org 

 𝐻2 = �
. 5000 0 0

0 . 7361 0
0 0 . 5000

� 

and the normalized Hi  are: 

𝐻1∗ = �
. 7071 0 0

0 . 3374 0
0 0 . 7071

� ; 

𝐻2∗ = �
. 7071 0 0

0 . 9414 0
0 0 . 7071

� 

The direction vector �̂�, is  

�̂� = 𝑀𝑑
−1𝑧 

= �
−0.1069
9.4973
−52.6626

� 

and normalized the direction vector, �̂�,  

such that  �̂�′ �̂� = 1 is  

�̂� = �
−.0020
. 1775
−.9841

� 

Then, the optimal starting point is  

𝑥
𝑗

=  �𝑤𝑖𝑥𝑖

12

𝑖=1

 

𝑥
0

=  �
1.0000
−0.0031
−0.1166

� 

Compute the optimal step-length 𝜌0, by substituting the 
values of 𝑥

0
 and �̂� in the variance function, and 

thereafter differentiate with respect to 𝜌0, equate to zero 
and solve for 𝜌�0, to obtain  

𝜌0 = .6483, 𝑜𝑟 𝜌�0 = −.7296; 𝑜𝑟 𝜌�0 = −.0835  

Make a move to obtain a point  

𝑥1 = 𝑥
0

+ 𝜌�0�̂� 

Then, substituting the value of 𝜌�0, we have  

𝑥1 = �
. 1119
−.7546

� ; 𝑜𝑟 𝑥1 = �
−.1326
. 6015

� ;  𝑜𝑟 𝑥1

= �
−.0180
−.0344

� 

The point of maximum prediction variance among the 
three points is  

𝑥1∗ = �
−.0180
−.0344

� 

Add this point 𝑥1∗, to the second segment (𝑆2) of the 
experimental region and repeat the process. Notice that 
the points in the first segment have increased by the 
addition of the new point, whereas the points in the 
second segment remain the same. 

The summary of the iteration cycles is given in the table 
below.  

Table 5.2: The iteration sequence of D-optimal 
design in [-1, 1], for a quadratic polynomial function 
of two factors  

 

The value of  𝜖 = .0003 is considered very small, 
meaning that the optimal design is reached. 

 Atkinson and Donev (1992) used KL exchange method 
to solve the problem for generating an exact D-optimal 
design for this regression model and obtain the same 
result which Box and Draper (1971) obtained via a 
computer hill-climbing search.  

Their D-optimal design is  

𝑛
= (−1,−1), (1,−1), (−1,1), (−.1315,−.1315), (. 3945, 1), (1, .3945) 

5.2  Assessment of the search method 

The assessment of this method was considered in two 
folds. The first one is the computer execution 

 time (c. e. t.) of the algorithm to get to D-optimal 
design. In this paper, a Matlab program of this 
algorithm was developed and average of twenty 
running time of each model is presented in the table 
below. All runs were performed in a Presario CQ56 
laptop computer.  

The second other way of assessment is through D-
efficiency. D-efficiency is a relative measure of how 
design compares with the D-optimum design for a 
specific design experimental region. Design efficiency 

Iteration Design points 𝐷𝑒𝑡 𝑀(𝜉) 𝜖 

0 
1 
2 
3 
4 

    -1,1    -1,-1      1,-1        1,1       0,-1       -25,         .25 
-1,1    -1,-1      1,-1        1,1       0,-1    -.0140,     -.0345 
-1,1    -1,-1      1,-1        1,1       0,-1    -.018         .0049 
-1,1    -1,-1      1,-1        1,1       0,-1    -.0178,    -.0007 
-1,1    -1,-1      1,-1        1,1       0,-1    -.0178,     .0001 

225.0000 
255.3910 
255.9877 
255.9997 
256.0000 

- 
30.3910 

.5967 

.0012 

.0003 
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is used to compare user-specified design to the optimal 
design. Theoretically, design efficiency lies between 0 
and 1, and the closer the efficiency to 1, the better the 
arbitrary design. If information matrix for optimal 
design is 𝑀(𝜉1), and suppose an arbitrary information 
matrix of a design is 𝑀(𝜉2). Then the D-efficiency of 
the arbitrary design is defined as  

𝐷𝑒𝑓𝑓 = {|𝑀(𝜉2)|
|𝑀(𝜉1)|}

1
𝑝, where p is the number of model 

parameters: see Atkinson and Donev (1989).  

The table below shows how the method 
compares with the KL-exchange method reported by 
Atkinson and Donev.  

Table 5.3: The performance of method 

Design problem Performan
ce of line 

search 

Performan
ce relative 

to KL 
exchange 

Execution 
time 

m        p        n |𝑀(𝜉)| 𝐷𝑒𝑓𝑓 In seconds 

1         3         3 

     2         6          6 

7.9999 

256.0000 

1.0000 

0.9924 

0.08 
2.24 

The table 5.3 above shows that the method is 
efficiently equal to what Atkinson, Donev and Tobias 
reported for a single factor quadratic polynomial 
function. In the same way, the new method is highly 
efficient as the result reported using KL exchange 
method for two factor quadratic polynomial models. 
Again, the new method reached the optimal design 
points in only four iteration cycles in each of the 
example with minimal execution time.  

6. Conclusion 

    A line search method for constructing D-optimal 
exact designs for a polynomial response function f(𝑥) 
of degree z, where the factor levels 𝑥 are defined in 
continuous geometry is shown. Under this search 
method, variance of the regression function is 
approximated by a polynomial function of degree 2z. A 
maximizer of this polynomial is determined by 
segmented line search technique. Thereafter, this 
maximizer is used to replace the point of minimum 
prediction variance from amongst the point already in 
the design. This exchange of points is continued until 
the sequence converges to D-optimal design. 

The search method compares favorably with 
the method of KL-Exchange Algorithm reported by 
Atkinson and Donev. We affirm that the new search 

method is a single search system, in contrast to the 
“Adjustment Algorithm” of Atkinson and Donev (1992, 
Chapter 15), where a secondary search is required at the 
end of the primary one before the search terminates. 
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